

Signal Converter with Trip Amplifier for hazardous area sensors

Via monte Nero, 40/B – 21049 TRADATE (VA) ITALY Phone: +39 (0)331841070 Fax:+39 (0)331841950 - e-mail:datexel@datexel.it - www.datexel.it

FEATURES

- Protection mode:
 - ll (1) G [Ex ia Ga] llC
 - II (1) D [Ex ia Da] IIIC
- according to the Directive ATEX 2014/34/EU
- Tc, RTD, Res, mV, V, mA, Potentiometer configurable input
- 0 to 10V, 0 to 20mA configurable output
- PC configurable
- 2000 Vac galvanic isolation between input and output
- EMC compliance CE mark
- Suitable for DIN rail mounting

GENERAL DESCRIPTION

The DAT 4235 IS device is a galvanic isolated Intrinsically Safety Barrier, defined as "Associated Apparatus"

The input measures mV, V, mA or resistance signals, and can be directly connected to Thermocouple, RTD or potentiometer sensors.

The input signal is filtered, linearised, amplified and transferred to the output circuit, that converts it in a 0-10V range or 0-20mA range signal. Auxiliary power supply allows to supply the output current loop. Moreover, the device is able to control two trip alarm relay outputs.

DAT 4235 IS has a 3 way isolation: input (connected to hazardous area devices) is 2000 Vac isolated from power supply and output (connected to safe area); power supply and output are 1500 Vac isolated between them.

The " DAT 4235 IS /A " model converts the input signal in analogue output, the " DAT 4235 IS /B " model controls two output trip alarms. The " DAT 4235 IS /C " model is able both to converts the input signal in analogue output and to control two output trip alarms.

Configuration and configuration is made by means of personal computer through the PRODAT-IS interface.

The device must be powered with a voltage between 20 and 30 Vdc; the "PWR" green led turned on indicate the correct power supply; the "THR1" and "THR2" red led indicates the trip alarm status.

The device is housed in a rough self-extinguish plastic enclosure of 22.5 mm thickness suitable for DIN rail mounting .

TECHNICAL SPECIFICATIONS (Typical @ 25 °C and in the nominal conditions)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Input type	Min	Max	Span min	Input Calibration		Trip alarms	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-		> of ±0.1% fs or ±0.2°C	Output type	n° 2 SPDT Relays
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TC(*) CJC int./ext.					> of ±0.1% fs or ±0.15 Ω	Contact rating	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J				Res. KOhm	> of ±0.2% fs or ±1 Ω	_	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	K				mV, Tc	> of ±0.1% fs or ±10 uV		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S				V	> of ±0.1% fs or ±2 mV		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R B	400°C	1820°C	400 °C			j	110 Vdc
N $-200^{\circ}C$ $1300^{\circ}C$ $100^{\circ}C$ Voltage $\pm 10 \text{ mV}$ Power SupplyRTD(*) $-200^{\circ}C$ $850^{\circ}C$ $50^{\circ}C$ C	E						Isolation	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Т							between contacts: 1000Vac
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N	-200°C	1300°C	100 °C	Voltage	± 10 mV	Bower Supply	
$ \begin{array}{c} Resistance \\ Pri100 \\ Pri100 \\ -200^{\circC} \\ 200^{\circC} \\ 200^{\circC} \\ 200^{\circC} \\ 200^{\circC} \\ 100^{\circC} \\ 100^{\circ$								20 ÷ 30 \/dc
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pt100				Current	< 650 Ω		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pt1000				Voltage	> 4.7 KΩ	Isolation	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni100						Input/Output	2000 Vac, 50 Hz, 1min.
Voltage mV $-100mV$ $+700mV$ $2mV$ $500mV$ V $>= 1 M\Omega$ mA $\sim 50 \Omega$ Temperature & Humidity 	Ni1000	-60°C	150°C	50°C			Input/Supply	2000 Vac, 50 Hz, 1min.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							Supply/Output	1500 Vac, 50 Hz, 1min.
V $0 \vee$ $10 \vee$ 500mV $10 \vee$ $10 \times$					V	>= 1 MΩ		
Linearity mALinearity Tc $\pm 0.2 \text{ %fs}$ $\pm 0.1 \text{ %fs}$ Linearity TcHumidity (non condensing) 090 \% Current mA0 mA20 mA2 mATc $\pm 0.2 \text{ %fs}$ $\pm 0.1 \text{ %fs}$ Humidity (non condensing) 090 \% Potentiometer (nominal value) 0Ω 200 \Omega 500Ω 10% 10% Lead wire resistance influence Tc, mV $<=0.8 \text{ uV/Ohm}$ RTD 3-wires $0.05\%/\Omega (100 \Omega \text{ max balanced})$ $0.5 \text{ K}\Omega 2 \text{ K}\Omega$ 10% 10% RtD 3-wires RtD 3-wires $0.05\%/\Omega (100 \Omega \text{ max balanced})$ RtD 4-wires $\text{Humidity (non condensing)}$ 090% Resistance Ohm 0Ω 300Ω 2000Ω 10Ω 200Ω Thermal drift Full Scale CJC $\pm 0.01\%^{2}\text{C}$ EN 61000-6-2 Emission $\text{Em (for industrial environments)}$ Immunity EN 61000-6-2 EmissionOutput typeMinMaxSpan min Voltage 0 V 10 V 1 V $\text{CJC cmp. } \pm 0.5^{\circ}\text{C}$ Response time $\sim 0.4 \text{ sec.}$ $\text{Terminals 1-2-3-4-5-6-7:}$ $1 = 30 \text{ W}$ $1 = -0 \text{ mH}$ $\text{C} = 2 \text{ uF}$ $\text{Ii = 30 \text{ mA}$ $1 = -0 \text{ mH}$ $\text{C} = 2 \text{ uF}$	mV				mA	~ 50 Ω		
$\begin{array}{c c} Current \\ mA & 0 mA & 20 mA & 2 mA \\ \hline Tc & \pm 0.2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	V	0 V	10 V	500mV	I for a sold a		Operating Tempera	ature -20°C +60°C
MA0 mA20 mA2 mARTD $\pm 0.1 \% fs$ Housing MaterialMaterialSelf-extinguish plastic MountingPotentiometer (nominal value)0 Ω 200 Ω 10% 200 Ω 10% 500 Ω 10% 10%Tc, mV<=0.8 uV/Ohm RTD 3-wires0.05%/ Ω (50 Ω max balanced) RTD 4-wiresMouning UN max balanced) ImmunityDIN Rail WeightWeight \sim 150 g. Dimensions (mm): 120 x 100 x 22.5Resistance Ohm0 Ω 300 Ω 10 Ω 2000 Ω Thermal drift Full ScaleThermal drift $L = 0.01\%'^{\circ}C$ EMC (for industrial environments) ImmunityEN 61000-6-2 EmissionOutput typeMinMaxSpan min VoltageRTD excitation current Typical $\Omega.350$ mACJC Comp. $\pm 0.5^{\circ}C$ Response time ~ 0.4 sec.Terminals 1-2:3-4:5-6:7: Uo = 7.8 V I = 100 mAUi = 30 V I = 100 mAVoltage0 W10 V1 VCJC Comp. $\pm 0.5^{\circ}C$ Response time ~ 0.4 sec.Ui = 30 W I = 20 mH C = 2 uFUi = 30 V I = 20 mH C = 2 uF	. .						Humidity (non cond	lensing) 0 90 %
MA0 mA20 mA2 mAN D $\pm 0.17 \text{ //s}$ isMaterialSelf-extinguish plasticPotentiometer (nominal value)0 Ω 200 Ω 10%Lead wire resistance influence Tc, mVTc, mV<=0.8 uV/Ohm							Housing	
Potentiometer (nominal value) 0Ω 200Ω 200Ω 500Ω $0.5 K\Omega$ 10% 10% Lead wire resistance influence $Tc, mV <=0.8 uV/Ohm$ RTD 3-wiresMountingDIN Rail WeightResistance Ohm 0Ω 200Ω $2 K\Omega$ 10% 10% Thermal drift Full Scale $2 OO \Omega$ Thermal drift Full Scale $2 OO \Omega$ Thermal drift Full Scale $2 OO \Omega$ ENC (for industrial environments) Immunity EN 61000-6-2 Emission EN 61000-6-4Output typeMinMaxSpan min TypicalRTD excitation current TypicalThermal 0.350 mA CJC Comp. $\pm 0.5^{\circ}C$ Response time 0.4 sec.Terminals A-B-C-D; E-F-G-H-I-J; K-L: Ui = 30 V Ii = 100 mA Po = 140 mW Li = $\sim 0 \text{mH}$ Ci = 24 nF	mA	0 mA	20 mA	2 mA	RID	± 0.1 %is		Self-extinguish plastic
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Lood wire register	noo influence		
Informinal Value) 0Ω 200Ω 200Ω 500Ω 10% 10% 10% RTD 3-wires $0.05\%/\Omega$ (50Ω max balanced) $0.05\%/\Omega$ (100Ω max balanced) $0.05\%/\Omega$ (100Ω max balanced) RTD 4-wires $0.005\%/\Omega$ (100Ω max balanced) $0.005\%/\Omega$ (100Ω max balanced) 10% Dimensions (mm) : $120 \times 100 \times 22.5$ EMC (for industrial environments) Immunity EN 61000-6-2 Emission EN 61000-6-4Resistance Ohm O Ω 2000Ω 0Ω 2000Ω 10Ω 200Ω $Thermal driftFull ScaleCJC\pm 0.01\%'^{\circ}CCJCEMC (for industrial environments)ImmunityEN 61000-6-4Output typeMinMaxMaxSpan minTypicalRTD excitation currentTypical0.350 \text{ mA}Terminals A-B-C-D; E-F-G-H-I-J; K-L : Um = 250 VVoltage0 V10 V1 VCJC Comp.Response time\sim 0.4 sec.0.350 \text{ mA}Ui = 30 VLi = 20 \text{ mH}Ci = 24 \text{ nF}$				1.001				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(nominal value)	-			,			
Image: Constraint of the constr						,		
Resistance Ohm 0Ω $\Omega \Omega$ 300Ω 2000Ω 10Ω 200Ω 10Ω $\Omega \Omega$ 10∇ $1 V$ 1∇ $\Omega \Omega$ 1∇ Ω 1∇ Ω 1∇ Ω 1∇ Ω 1∇ Ω 1∇ Ω <td></td> <td>0.5 KΩ</td> <td>2 KΩ</td> <td>10%</td> <td>RID 4-wires</td> <td>$0.005\%/\Omega$ (100 Ω max balanced)</td> <td colspan="2"></td>		0.5 KΩ	2 KΩ	10%	RID 4-wires	$0.005\%/\Omega$ (100 Ω max balanced)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Thermal drift			
KOhm 0Ω 2000Ω 200Ω $correction of the correction of the correc$					Full Scale	± 0.01%/°C	Emission	EN 61000-6-4
KOnm 0Ω 2000Ω 200Ω $Terminals A-B-C-D; E-F-G-H-I-J; K-L: Um = 250 V$ Output typeMinMaxSpan min TypicalRTD excitation current Typical 0.350 mA Terminals A-B-C-D; E-F-G-H-I-J; K-L: Um = 250 VVoltage $0 V$ $10 V$ $1 V$ $CJC Comp. \pm 0.5^{\circ}C$ $\pm 0.5^{\circ}C$ Terminals $1-2-3-4-5-6-7$: $Io = 32 mA$ Ui = 30 VCurrent 0 mA 20 mA 4 mA Response time ~ 0.4 sec. 0.4 sec. $Ui = 20 \text{ mH}$ Co = 20 mH $Li = \sim 0 \text{ mH}$ $Ci = 24 \text{ nF}$	Ohm	0Ω	300 Ω	10 Ω	CJC	± 0.01%/°C	Ex Detai	
Output typeWinMaxSpan minTypical0.350 mAVoltage $0 \vee$ $10 \vee$ $1 \vee$ $CJC \text{ Comp.}$ $\pm 0.5^{\circ}C$ Terminals $1-2\cdot3\cdot4\cdot5\cdot6\cdot7:$ Ui = $30 \vee$ Current 0 mA 20 mA 4 mA Response time $\sim 0.4 \text{ sec.}$ $Ui = 20 \text{ mH}$ $Ui = 20 \text{ mH}$ Course to the course of	KOhm	0Ω	2000 Ω	200 Ω			Ex Data:	
Voltage 0 V 10 V 1 V CJC Comp. ± 0.5°C Terminals 1-2-3-4-5-6-7: Terminals 5-6-7: Ui = 30 V Ui = 30 V Ii = 100 mA Po 140 mW Pi = 0.75 W Li = -0 mH Li = -0 mH Co = 24 mF <t< td=""><td>Output type</td><td>Min</td><td>Мах</td><td>Span min</td><td colspan="2"></td><td colspan="2"></td></t<>	Output type	Min	Мах	Span min				
Current 0 mA 20 mA 4 mA CJC Comp. ± 0.5°C 00 = 7.8 V 00 = 7.8 V 00 = 30 V	Valtara	0.14	10.1/	4.14			Terminals 1-2-3-4-5-6-7	': Terminals 5-6-7:
Current 0 mA 20 mA 4 mA Response time ~ 0.4 sec. 10 = 32 mA 11 = 100 mA Po = 140 mW Pi = 0.75 W Lo = 20 mH Li = ~ 0 mH Co = 2 uF Ci = 24 nF Ci = 24 nF	voitage	UV	10 V	1 V	CJC Comp.	± 0.5°C		
Lo = 20 mH Co = 2 uF Li = ~0 mH Ci = 24 nF	Current	0 m 1	20 m A	4 m 4	•			
	Current	UMA	20 MA	4 MA	Response time	~ 0.4 sec.		
Ta20 + +60 °C							Co = 2 uF	Ci = 24 nF
							Ta : -20 ÷ +60 °C	

CONFIGURATION & CALIBRATION

Note: during these phase the device must be always powered.

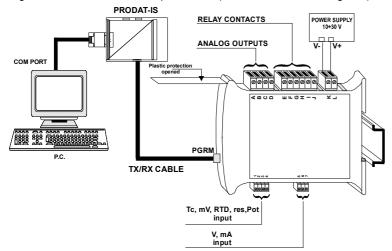
- CONFIGURATION

- 1) Open the plastic protection on the front of the enclosure.
- 2) Connect the PRODAT-IS interface to the Personal Computer and to the device on the PGRM connector, as show below
- 3) Open the PROSOFT configuration program.
- 4) Set the programming data (refer to the Prosoft user guide.).
- 5) Send the programming data to the device (refer to the Prosoft user guide.).

- CALIBRATION CONTROL

With software PROSOFT running:

1) Connect on the input a calibrator setted with minimum and maximum values referred to the electric signal or to the temperature sensor to measure.


2) Set the calibrator at the minimum value.

3) Verify that the device provides on output the minimum setted value.

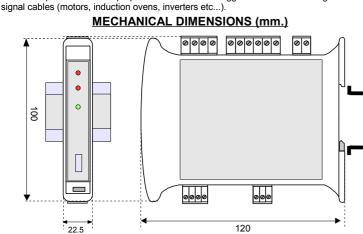
- 4) Set the calibrator at the maximum value.
- 5) Verify that the device provides on output the maximum setted value.
- 6) In case of regulation of value obtained in the step 3 and 5, use the ZERO and SPAN

regulators of software PROSOFT. The variation introduced from these regulators must be calculated as percentage of the input range

7) Program the device with the new parameters (refer to the Prosoft user guide.) .

INSTALLATION INSTRUCTIONS

To guarantee the Safety characteristics, before to install the device read the relative "Safety Instructions" supplied with them.

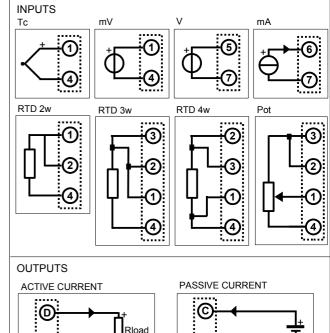

The DAT 4235 IS device is suitable for fitting to DIN rails in the vertical position. For optimum operation and long life, follow the instructions above.

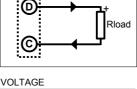
- When devices are installed side by side, it may be necessary to separate
- them by at least 5mm in the following case:
- If panel temperature exceeds 45°C and at least one of the overload conditions exist.
- If panel temperature exceeds 35°C and at least two of the overload conditions exists. The overload conditions are the following:

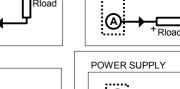
- High supply voltage: >27Vdc

Use of the auxiliary power supply (terminal D)

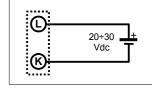
Make sure that sufficient air flow is provided for the device avoiding to place raceways or other objects which could obstruct the ventilation slits. Moreover it is suggested to avoid that devices are mounted above appliances generating heat; their ideal place should be in the lower part of the panel. It is recommended to use shielded cable for connecting signals. The shield must be connected to an earth wire provided for this purpose. Moreover it is suggested to avoid routing conductors near power



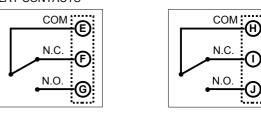

The symbol reported on the product indicates that the product itself must not be considered as a domestic waste

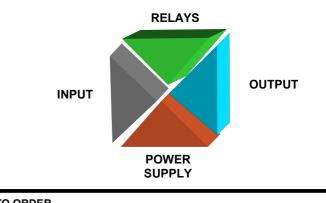

It must be brought to the authorized recycle plant for the recycling of electrical and electronic waste. For more information contact the proper office in the

user's city, the service for the waste treatment or the supplier from which the product has been purchased.



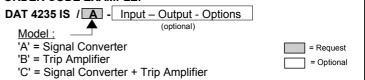
WIRING


Rload



(B)

A


ISOLATION STRUCTURE

HOW TO ORDER

DAT 4235 IS can be supplied in the configuration requested by the customer in the order phase. In case of the configuration is not specified, the parameters must be set by the user.

ORDER CODE EXAMPLE:

Datexel s.r.l.reserves its rights to modify its products totally or in part without warning at any time